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ABSTRACT
This paper tackles the problem of mining subgoals of a given search
goal from data. For example, when a searcher wants to travel
to London, she may need to accomplish several subtasks such as
“book flights,” “book a hotel,” “find good restaurants” and “decide
which sightseeing spots to visit.” As another example, if a searcher
wants to lose weight, there may exist several alternative solutions
such as “do physical exercise,” “take diet pills,” and “control calo-
rie intake.” In this paper, we refer to such subtasks or solutions as
subgoals, and propose to utilize sponsored search data for finding
subgoals of a given query by means of query clustering. Adver-
tisements (ads) reflect advertisers’ tremendous efforts in trying to
match a given query with implicit user needs. Moreover, ads are
usually associated with a particular action or transaction. We there-
fore hypothesized that they are useful for subgoal mining. To our
knowledge, our work is the first to use sponsored search data for
this purpose. Our experimental results show that sponsored search
data is a good resource for obtaining related queries and for identi-
fying subgoals via query clustering. In particular, our method that
combines ad impressions from sponsored search data and query co-
occurrences from session data outperforms a state-of-the-art query
clustering method that relies on document clicks rather than ad im-
pressions in terms of purity, NMI, Rand Index, F1-measure and
subgoal recall.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
The information needs of a web search engine user are some-

times complex, and may span multiple queries or even multiple
search sessions [21, 31]. When the user wants to travel to Lon-
don, she may need to accomplish several subtasks such as “book
flights,” “book a hotel,” “find good restaurants” and “decide which
sightseeing spots to visit,” and issue multiple queries accordingly,
possibly over a length of time. As another example, for a user who
wants to lose weight, there may exist several alternative solutions
such as “do physical exercise,” “take diet pills,” and “control calo-
rie intake.” The user may not even be aware that these different
solutions exist, so she will probably have to issue several queries
to find out about them. In this paper, we refer to such subtasks or
solutions as subgoals. Our precise definitions are as follows:

• A search goal is an action that the searcher wants to achieve,
often represented by a verb plus possibly a noun phrase.

• A search goal x is a subgoal of another search goal y if achiev-
ing x helps the searcher to also achieve y either wholly or
partially.

Note that while a subgoal “book flights” alone can only partially
satisfy a search goal “travel (to) London,” a subgoal “do physical
exercise” may wholly satisfy “lose weight.”

In this paper, we tackle the problem of automatically mining sub-
goals of a given search goal from data. To this end, we propose to
utilize sponsored search data for finding subgoals of a given query
by means of query clustering. Advertisements (ads) reflect adver-
tisers’ tremendous efforts in trying to match a given query with im-
plicit user needs. Moreover, ads are usually associated with a par-
ticular action or transaction. We therefore hypothesized that they
are useful for subgoal mining. To our knowledge, our work is the
first to use sponsored search data for this purpose.

We further hypothesize that queries that represent a common
subgoal are associated with similar ads, and employ a state-of-
the-art query clustering algorithm [28] in order to mine subgoals



Table 1: Example search goals and their subgoals mined by our
proposed method.

search goal: lose weight

1. fitness, gyms, health clubs, workout, ...
2. alli, diet pills, best weight loss pills, hcg drops, ...
3. diabetic recipes, diet recipes, healthy recipes, ...
4. denise austin, jillian michaels, kathy smith
5. high protein foods, protein, protein foods
6. calorie counter
...

search goal: relieve stress

1. cheap lexapro, generic lexapro, lexapro side effects,
wellbutrin xl, wellbutrin xl 150 mg, ...

2. baseball stress balls, stress ball, stress relief toy, stress toys
3. body massage, massage therapist, massage therapy,

stress factory, ...
4. exercise heal, gaiam, holden, qigong
5. anxiety medications, herbs anxiety
6. zen garden
...

search goal: travel London

1. cheap hotel london, london airport hotels, london hotel
deals, london hotels, london luxury hotels, ...

2. airfare london, airline tickets london, cheap airfare london,
flights london, ...

3. london 2012, london summer olympics,
2012 olympic games, 2012 olympics tickets, ...

4. car rental london, london car rental
5. london travel card, oyster card london
...

from queries in the sponsored search data. Given a query that rep-
resents a search goal, our method first collects its related queries
from sponsored search data, and then clusters them based on ad im-
pressions as well as within-session query co-occurrences. Table 1
shows a few examples of goal-subgoal relationships mined using
our proposed method. It can be observed that for the search goal
“lose weight,” query clusters that represent subgoals such as “do
physical exercise,” “take diet pills” and “control calorie intake” are
obtained. Also, for the search goal “relieve stress,” we can observe
that query clusters that represent possible alternative solutions such
as “take medicine,” “buy stress relief toys” and “have a massage”
are obtained. This hierarchy of search goals have many possible
applications, including:

• Given a query, present the user with its possible subgoals, for
example, as query suggestions;

• Given a query (e.g. “lose weight pills”), present the user with
alternatives (e.g. “healthy diet recipes”), by identifying their
common grand goal (e.g. “lose weight”);

• Evaluating web search engines from the viewpoint of total
user satisfaction, by means of goal-based evaluation as op-
posed to query-based evaluation as exemplified by nDCG [20].
Note that even though there are attempts at session-based IR
evaluation [23], queries that represent subgoals of a search
goal may span multiple sessions and users in general.

Figure 1 shows some example ads of a commercial search en-
gine. In sponsored search, advertisers bid on various bid phrases
so that their ads will be displayed in response to certain queries as

curves women's fitness

Lose weight and keep it off! 
Request a free week pass today.

www.curves.com

health clubs fitness

bid phrases

ads

weight loss exercise

health and fitness center

Out of shape? get some 
exercise. stop by our gym and 
get moving today.

www.denverymca.org

gyms

Figure 1: Example of ads and their bid phrases.

shown in the figure. Today’s major commercial search engines have
this kind of mechanism. According to our preliminary study with
10,000 head queries obtained over one recent week from a popular
search engine, 68.3% of them had some ads displayed.

Our experimental results show that sponsored search data is a
good resource for obtaining related queries and for identifying sub-
goals via query clustering. In particular, combining ad impressions
with within-session query co-occurrence information outperforms
a state-of-the-art query clustering method that uses document clicks
rather than ad impressions, in terms of purity, NMI, Rand Index,
F1-measure and subgoal recall (See Section 4.4).

The rest of this paper is organized as follows. Section 2 dis-
cusses previous work related to our study. Section 3 describes our
approach to mining subgoals using sponsored search data. Sec-
tion 4 describes our experimental setup and Section 5 discusses the
results. Finally, Section 6 concludes this paper.

2. RELATED WORK

2.1 Sponsored Search
Sponsored search has recently been an area of active research.

The main research topics of this area have been the improvement of
ads retrieval performance [6, 16, 27] and clickthrough rate (CTR)
estimation for the retrieved ads [14, 32]. For example, Broder et
al. [6] proposed a technique that leverages related organic (i.e. non-
sponsored) search results as the source of query expansion to over-
come the problem of low precision and recall of ads retrieval.

Some researchers have analyzed user behaviors in the context
of sponsored search [7, 10, 17, 19]. In Jansen’s experiments with
e-commerce queries [17], the participants’ relevance ratings for or-
ganic search results and those for ads were practically the same.
Moreover, according to a CTR analysis by Danescu-Niculescu-
Mizil et al. [10], users prefer ads that are dissimilar to organic re-
sults for navigational queries, and those that are similar to organic
results for informational queries. The findings shown in both liter-
ature support the fact that ads play an important role in satisfying
the users’ information need along with organic search results.

2.2 Query Clustering
Next, we discuss prior art in query clustering, as our approach

applies query clustering to sponsored search data in order to mine
subgoals.

Query clustering is useful for understanding the underlying user
intents and for improving query suggestions, and thus many query
clustering techniques have been proposed. Most of existing work
have relied on statistics derived from query session and clickthrough
data: within-session query co-occurrences [13, 4, 29], similarity
of clicked documents [2, 3, 30] and their combination [8, 28]. In
this paper, we apply the query clustering algorithm proposed by
Sadikov et al. [28] to sponsored search data, as it has been shown
to achieve state-of-the-art performances through a large-scale user
study. The main objective of this study is to show the usefulness of
sponsored search data as a resource for mining subgoals: effective



query clustering methods other than that by Sadikov et al. are also
applicable to this problem.

We hypothesized that using the session data alone is not suffi-
cient for the purpose of mining subgoals, because queries issued
for a single search goal may span multiple sessions over a length of
time and even span multiple users. Note that sessions are defined
based on 10-30 minutes of inactivity in many studies, and also that
a single session may contain queries for several different search
goals.

In contrast to session and clickthrough data, sponsored search
data may have the following advantages for the purpose of sub-
goal mining: (a) we may be able to mine goal-subgoal relationships
across sessions and across users; (b) since ads reflect the advertis-
ers’ tremendous effort in trying to match queries with the under-
lying user intents, we can leverage high-quality query-ad relation-
ships that go beyond surface-level matching; (c) as ads are designed
to make the user perform an action or transaction, they may directly
reflect goals and subgoals.

2.3 Query Intent Categorization
Categorizing queries into predefined classes is an alternative to

the aforementioned bottom-up clustering approaches for the pur-
pose of understanding user intents. Many researchers [18, 22, 24]
have tackled the problem of categorizing queries into navigational,
informational and transactional [5]. Moreover, in the context of
sponsored search, Dai et al. classified queries into commercial
(e.g. buy or sell something) and non-commercial [9]. Guo and
Agichtein [15] further refined the commercial category into re-
search and purchase. However, these top-down approaches are not
appropriate for our purpose, as we need to mine a variety of un-
known subgoals for a given search goal.

2.4 Search Missions and Goals
The work that is most closely related to our present study is

that by Jones and Klinkner [21], who introduced the concepts of
search mission and search goal. According to their definitions,
a search goal is an atomic information need represented by one
or more queries, while a search mission is a set of related infor-
mation needs represented by one or more search goals. Although
our goal-subgoal relationships are also defined hierarchically just
like their mission-goal relationships, ours are different from theirs:
while their aim is to analyze individual search tasks of a searcher
and thus their mission-goal relationships represent the hierarchical
needs for the searcher, our aim is to mine more general hierarchical
needs of searchers, rather than limiting ourselves to a session of a
single searcher. In addition, although they proposed a model to au-
tomatically determine whether a given pair of queries in the same
session shares the same search mission or goal, the candidate query
pairs are a given. In contrast, given a query, our approach mines its
subgoals from related queries in the sponsored search data.

More recently, Aiello et al. have proposed a clustering algorithm
that clusters search missions into underlying topics [1]. Their aim is
to find broad topical user profiles of search engine users from query
logs, rather than finding mission-goal relationships. For example,
they aim at finding the general travel intent from related missions
such as “Find information on travel to London.”

3. SUBGOAL MINING METHOD

3.1 Overview
In response to a query, commercial search engines often present

sponsored search results in addition to organic search results. This
happens when the query matches with the advertisers’ bid phrases,

Table 2: Structure of sponsored search data in this study.
query ad impression
fitness ad1 2,300
fitness ad2 530

health clubs ad1 1,880

Search query q0

Sponsored search data

Session data

1. Collecting related queries

2. Clustering related queries

Queries Q

Ads A

C1 C2 Ck

Queries Q qn

Query Clusters

Figure 2: Overview of our method.

and the associated ads are ranked according to their bids and esti-
mated CTR [10]. The contents of each ad, devised by the advertis-
ers, are typically like the ones shown in Figure 1. The sponsored
search data used in our work leverages the above mechanism: some
examples are shown in Table 2. Each data record is a triple, con-
sisting of the query issued by a search engine user, the ad, and its
impression count, which represents the number of times the ad was
displayed in response to the query.

Figure 2 shows the overview of our subgoal mining method. In
this paper, we refer to the query that is input to our method as
search query, to distinguish it from its related queries that are to
be clustered by our method. Given the search query q0, our first
step is to collect a set of related queries Q = {q1, . . . , qn} for a
given n by utilizing the ad contents of the aforementioned spon-
sored search data. Then, our second step outputs a set of query
clusters C = {C1, . . . , Ck} for a given k. This step uses both
sponsored search data and session data and applies the clustering
algorithm by Sadikov et al. [28].

Sections 3.2 and 3.3 describe the above two steps in detail.

3.2 Collecting Queries
Given the search query q0 and the required number of related

queries n, we first collect a set of related queries Q = {q1, . . . , qn}
using the ad contents of the sponsored search data, as described
below.

Let A be the entire set of ads archived in the sponsored search
data, and let Aq0(⊆ A) be the set of all ads whose ad contents
contain q0. For example, note that the ad on the left in Figure 1
contains “lose weight” which could be a search query. For each
query q in the sponsored search data such that wimp(q, a) > 0 for
some a ∈ Aq0 , where wimp(q, a) denotes the impression count
(See Table 2), we compute its total impression across the relevant
ads:

P
a∈Aq0

wimp(q, a). Then, we sort the queries by the total
impression and take the top n. That is, we obtain n queries related
to q0, whose associated ads have high impressions.

3.3 Clustering Queries
Having thus obtained the set of related queries Q, we cluster the

queries into k clusters, using the algorithm proposed by Sadikov
et al. [28]. The original purpose of their clustering algorithm was
to identify intents that are common across different query strings,



and it relied on two assumptions: (1) If two queries share the same
intent, they are associated with the same clicked documents; and
(2) If two queries share the same intent, they co-occur within the
same session. For the purpose of mining subgoals from sponsored
search data, we adapt the above assumptions as follows:

• If two queries represent the same subgoal intent, they are
associated with the same ads.

• If two queries represent the same subgoal intent, they co-
occur within the same session.

Thus, our departures from the original method by Sadikov et al.
are: (a) We construct a query-ad graph instead of a query-document
graph; and (b) We use ad impressions for computing the query-
ad transition probability instead of document clicks. Below, we
provide more details of the clustering algorithm.

Query-Ad Graph.
Given the set of related queries Q for a search query, we con-

struct a query-ad graph as follows. First, we obtain all ads from
the sponsored search data that match a query from Q: let the set of
these ads be A. Then we construct a query-ad graph G = (V, E),
where V = Q∪A denotes the set of nodes in G, and E denotes the
set of edges in G. In G, the edge between any two queries exists
iff they co-occur in the same session; and the edge between any
query-ad pair exists iff there is an impression record for that pair in
the sponsored search data.

Transition Probability Matrix.
Once we have constructed the query-ad graph G, we prepare a

transition matrix P, which represents the transition probabilities
among the nodes in G. P contains three types of transition proba-
bilities: query-to-query, query-to-ad, and ad-to-ad. Figure 3 shows
the transition model. As this figure shows, the model contains a
parameter called ε, which determines the probability of transition
from a query node to ad nodes.
query-to-query transition: This probability is determined based
on the probability that a pair of queries co-occurs in the same ses-
sion. The transition probability from query qi to query qj is defined
as:

p(qj |qi) = (1 − ε)
wcooc(qi, qj)P

q′∈R(qi)
wcooc(qi, q′)

,

where wcooc(qi, qj) denotes the number of sessions that qi and qj

co-occurred, and R(qi) is the set of all queries that co-occurred
with qi within the same session. In practice, there are transitions
from qi to queries that are outside the set of related queries Q. We
therefore introduce a special node f in G to collectively represent
such queries, and we define the transition probability from qi to f
as follows:

p(f |qi) = (1 − ε)

P
q′∈(R(qi)−Q) wcooc(qi, q

′)
P

q′∈R(qi)
wcooc(qi, q′)

.

That is, all transitions from each query qi to queries outside Q
are aggregated to node f . The node f has only the self-transition
p(f |f) with probability 1.
query-to-ad transition: This probability is defined as:

p(aj |qi) = ε
wimp(qi, aj)P

a′∈A wimp(qi, a′)
.

ad-to-ad transition: We define p(aj |ai) to be 0 if i �= j and 1 if
i = j.

Queries

Ads

Figure 3: Example transitions on a query-ad graph. A random
walk is applied on it for clustering queries.

Table 3: Data statistics.
(a) sponsored search data
# of unique queries 25,394,581
# of unique ads 25,796,013
# of unique query-ad pairs 142,915,236
(b) clickthrough data
# of unique queries 86,988,237
# of unique URLs 91,309,344
# of unique query-URL pairs 182,624,954
(c) session data
# of queries 460,396,996
# of unique queries 142,253,653
# of sessions 214,396,433

Random Walk.
After preparing the transition probability matrix P, we perform

a random walk on the query-ad graph G. Let Pl be the transition
probability matrix after an l-step random walk. The row in Pl for
qi can be interpreted as visit probabilities over the nodes in G after
an l-step random walk that started at qi.

As we can see from Figure 3, there is no ad-to-query transition,
and there are only self-transitions among ads. Hence, for each qi,
the visit probabilities over Q approach zero while those over A
converge as we iterate the random walk process. As Sadikov et
al. notes, 3-5 iterations are enough in practice [28]. The transition
probability matrix obtained after the convergence is referred to as
P′.

Query Clustering.
Finally, we cluster queries in Q using the transition probabilities

from P′. For each query qi ∈ Q, its query vector is represented by
a transition probability vector:

qi = [p′(a1|qi), . . . , p
′(aj |qi), . . . , p

′(a|A||qi)] ,

where p′(aj |qi) denotes the transition probability from qi to aj in
P′, which can be interpreted as the probability that ad aj would be
displayed to the searcher who starts with query qi. When two query
vectors qi and qj are similar, this implies that similar ads are likely
to be displayed in response to two different queries.

Following Sadikov et al. [28], we use a complete-linkage clus-
tering method with cosine similarity of the above query vectors to
obtain a set of k query clusters C = {C1, . . . , Ck}.

4. EXPERIMENTAL SETUP

4.1 Logs
In our experiments, we used three types of logs, namely, spon-

sored search data, clickthrough data and session data. As was
shown in Table 2, a sponsored search data record is a query-ad-
impression triplet. Similarly, a clickthrough data record is a triplet
composed of a query, clicked document and its click count. The
latter is used for our implementation of the document-click-based



Table 4: Inter-assessor agreement on the number of annotated subgoals among the assessors (A1, A2, A3).
A2

#0 #1 #2 Total
#0 574 10 100 684

A1 #1 5 4 4 13
#2 105 3 87 195

Total 684 17 191 892

A3
#0 #1 #2 Total

#0 613 6 65 684
A1 #1 10 0 3 13

#2 83 1 111 195
Total 706 7 179 892

A3
#0 #1 #2 Total

#0 585 6 93 684
A2 #1 10 0 7 17

#2 111 1 79 191
Total 706 7 179 892

method of Sadikov et al. [28], which we use as a baseline in our
experiments. As for session data, each record is a triplet composed
of a session ID, a query and a timestamp, and a session is defined
based on a 30-minute inactivity. All of these logs were sampled
from a popular search engine and span exactly the same period
from November 2011.

The raw sponsored search data contained some query-ad pairs
for which queries and bid phrases were not exact matches (e.g.
“health” vs. “health clubs”), thus we filtered out such pairs. This is
because the query-ad pairs obtained through non-exact matches de-
pend on the particular ads retrieval algorithm of the search engine,
and we wanted to obtain results that are search engine independent.
The statistics of the data thus obtained are shown in Table 3.

4.2 Proposed and Baseline Methods
To examine the effectiveness of our method that relies on spon-

sored search data, we implemented the following four methods.
(a) AdImp: This method clusters queries to mine subgoals as we
described in Section 3. Given a search query, it obtains related
queries from the sponsored search data, and then clusters them
by combining ad impressions from the sponsored search data and
query co-occurrences from the session data.
(b) AdImp (no cooc): This is the same as AdImp, except that query-
to-query transitions derived from the session data are not used for
clustering. That is, only query-to-ad transitions derived from the
sponsored search data are utilized.
(c) DocClick: This is our implementation of the query clustering
algorithm proposed by Sadikov et al. [28], which we treat as a base-
line. Thus, given a search query, it obtains related queries from the
session data, and then clusters them by combining document clicks
from the clickthrough data and query co-occurrences from the ses-
sion data. While Sadikov et al. originally obtained n most frequent
queries that follow q0 within the same session, we obtained n most
frequent queries that follow or is followed by q0 within the same
session, as the order of issuing queries is not important for our pur-
pose.
(d) DocClick (no cooc): This is the same as DocClick, except that
query-to-query transitions derived from the session data are not
used for clustering. That is, only query-to-document transitions
derived from the clickthrough data are utilized.

Following Sadikov et al., we set the number of related queries to
n = 80 and the transition probability from query to ad or document
to ε = 0.6. Also, to construct the query-ad (or query-document)
graph G for a given search query, we used only the top 15 most
frequently displayed ads (or clicked documents) for each related
query.

4.3 Test Collection Construction
In order to evaluate the effectiveness of our subgoal mining meth-

ods based on query clustering, we created our own test collections
as described below.

4.3.1 Selecting Search Queries
Our first step was to select search queries that are to be used as

input to our subgoal mining method. Thus, the input queries needed
to be reasonably complex and to represent a search goal that may

be associated with multiple subgoals. To select such input queries,
we chose five domains (Business, Health, Recreation, Society and
Sports) from the taxonomy used in the search engine, and extracted
queries with high impressions from each domain1. From the high
impression queries, we selected queries that contains at least one
verb, or a noun that is derivationally related to a verb according
to WordNet2. This is because we want to handle queries such as
“weight loss” as well as explicitly verb-oriented queries like “lose
weight.” We thus obtained 892 candidate queries.

Three assessors independently annotated the above candidates
to select input queries that are appropriate for subgoal mining. For
each query, each assessor first judged whether it represents a search
goal (i.e. a particular action that needs to be accomplished) either
explicitly or implicitly; if it was judged as a search goal query,
she wrote down up to two example subgoals in a verb plus noun
phrase format (e.g. “do physical exercise” for a candidate query
“lose weight”).

Through the annotation task, 59 queries (6.6%) were annotated
with two subgoals by all three assessors, and 349 queries (39.1%)
were annotated with two subgoals by at least one assessor. Ta-
ble 4 shows the inter-assessor agreement statistics on the number
of annotated subgoals, where “#<number>” means the number of
subgoals annotated by each assessor. The Fleiss’ kappa [12] for
this data set is 0.343, which is a moderate agreement. This is not
altogether surprising, because given the same search queries, some
people can think of good subgoals (i.e. subtasks or solutions), while
others cannot. We are tackling the problem of subgoal mining pre-
cisely because we want to help the user by presenting possible sub-
goals that she may not be aware of.

From the annotated queries, we first selected those that were an-
notated with at least three unique subgoals, regardless of which as-
sessor contributed them. Then, to increase the number of queries,
we added some annotated queries for which at least one assessor
identified two subgoals. Finally, we removed some queries from the
set in order to avoid including very similar search goals. Through
this selection process, we obtained a total of 125 search queries
for our test collections, 25 queries for each of the five domains.
Table 5 shows some example search queries. Note that although
we selected these queries from the sponsored search data, these are
also part of the session data, as these data sets were obtained from
the same period.

4.3.2 Constructing Ground Truth Subgoals
In our present study, we view the problem of subgoal mining as

a query clustering task. Thus, given a set of queries that are related
to the search query, the problem is to cluster them appropriately,
so that each query cluster represents an appropriate subgoal of the
original search query. In order to evaluate this task, we need to
build some ground truth data. We thus hired the same three asses-
sors to manually cluster related queries and construct ground truth
subgoals.

1Donato et al. reported that information needs in domains such as
travel, health and education tend to be complex [11].
2WordNet, http://wordnet.princeton.edu/



Table 6: Statistics of each test collection. The mean and standard deviation are shown in the format of “<Mean>(<SD>).”
Collection A Collection B-1 Collection B-2

Both Ads Only Session Only Both Ads Only Session Only Both Ads Only Session Only

#search queries 98 – – 23 – – 23 – –

#subgoals per query 9.65(2.80) 8.69(2.58) 7.77(2.49) 9.04(3.93) 7.30(3.37) 5.83(2.48) 9.87(2.29) 8.39(2.39) 7.48(2.26)
#Not Relevant per query 40.11(17.49) 6.59(7.18) 33.80(13.78) 75.30(17.10) 23.04(13.01) 52.91(11.22) 50.91(16.93) 9.13(6.92) 41.91(12.26)
#Not Subgoal per query 13.15(9.86) 7.89(7.57) 6.55(5.46) 30.74(16.55) 22.00(12.18) 12.43(8.80) 31.30(10.71) 22.13(8.48) 12.26(5.98)

Related query overlap per query 0.054(0.041) – – 0.059(0.042) – – 0.059(0.042) – –
Subgoal overlap per query 0.71(0.15) – – 0.51(0.24) – – 0.62(0.17) – –

Table 5: Example search queries in test collections.
Domain Search query

Business car insurance dept relief lawn care
project management resume writing

Health back pain relief eye care lose weight
teeth whitening quit smoking

Recreation disney cruise fly fishing hiking
vegas shows whale watching

Society iq test learn spanish sat prep
us immigration wedding

Sports bodybuilding kayaking hockey equipment
skateboarding workout routines

For each search query, we prepared a set of related queries by
pooling the related queries obtained by AdImp and DocClick. Re-
call that the related queries of AdImp come from the sponsored
search data, while those of DocClick come from the session data.
As we want to compare the two approaches fairly, we included the
related queries from both sides in order to manually identify possi-
ble subgoals.

We developed a simple GUI tool to facilitate the manual query
clustering process, so that assessors could form clusters by drag-
ging and dropping queries on the screen. Because not all of the
pooled related queries represent a subgoal of the given search query,
we prepared two special clusters called Not Relevant and Not Sub-
goal: the former was for queries that were topically non-relevant
to the search goals, and the latter was for queries that are topically
relevant but do not represent a subgoal. For example, for search
query “lose weight,” a related query “lose weight fast” should be
put into the Not Subgoal cluster, as the latter is a specialization of
the original query and does not represent a subgoal.

Using the GUI tool, the assessors manually clustered the dis-
played queries, and were also asked to provide a subgoal label in
a “verb plus noun phrase” format. They were told that the target
number of clusters was around 10, but were allowed to form fewer
or more clusters if necessary. The tool also had a feature for assist-
ing the assessor if she was unfamiliar with the related queries being
displayed: by a right click on a related query, a web search result
was shown to the user in a separate browser window.

Manual clustering is a tedious process: each assessor typically
spent 30-60 minutes to complete the ground truth construction for
one search query. In order to save the assessment cost while trying
to maintain a reliable experimental environment, one assessor was
assigned to 100 search queries, and the other two assessors were
assigned to independently handle the remaining 25 search queries.
Thus, we obtained two separate search query sets: the first one is
relatively large but its ground truth data is constructed by only one
assessor; the second one is relatively small but it has two sets of
ground truth data.

4.3.3 Test Collection Statistics
As we mentioned above, we formed two separate sets of queries,

one containing 100 and the other containing 25, and assigned one

assessor to the former and two assessors to the latter. As a result
of manual clustering, we found that two search queries from each
query set did not contain enough relevant related queries, and there-
fore removed them. Thus, we obtained three subgoal mining test
collections in the end: “Collection A” containing 98 search queries,
as well as “Collection B-1” and “Collection B-2” sharing the same
23 search queries but annotated independently by two assessors.
Using these three different test collections enables us to focus on
general trends of the experimental outcome.

Table 6 shows the statistics of each test collection. The “Both”
columns show statistics on the pooled related queries; “Ads Only”
columns show statistics on the queries obtained from the spon-
sored search data (by the AdImp method); and “Session Only”
columns shows those on the queries obtained from the session data
(by the DocClick method). The “Related query overlap per query”
shows the average of the Jaccard coefficient between the two sets
of queries obtained from the sponsored search data and the session
data. The “Subgoal overlap per query” shows the Jaccard coeffi-
cient between two subgoal sets that contain the queries obtained
from the sponsored search data and those that contain the queries
from the session data. In total, we obtained 1,375 ground truth
subgoals (i.e. clusters) with 20,880 clustered related queries.

The “#Not Relevant” row of Table 6 indicates that many queries
from the session data (obtained by the DocClick method) were clas-
sified as Not Relevant, i.e., off-topic. This suggests that sponsored
search data may be a better resource than session data for obtaining
topically related queries. On the other hand, the “#Not Subgoals”
row shows that both sponsored search data and session data yield
some related queries that are topically relevant but do not repre-
sent a subtopic of the input search query: recall the aforementioned
“lose weight fast” example. In addition, through the analysis of
“#Not Subgoals” queries obtained from the sponsored search data,
we found some queries may be interpreted as supergoals of the
given search query. For example, for the search query “kickbox-
ing,” related queries “lose weight” and “self defense” were ob-
tained, due to the advertisers’ effort in promoting kick-boxing lessons.
That is, it is the search query “kickboxing” that can be interpreted
as a subgoal of “lose weight” or “self defense.”

The “Related query overlap per query” row shows that the over-
lap between the queries obtained based on the ad impressions in
the sponsored search data and those obtained based on query co-
occurrences in the session data is small. In contrast, the “Subgoal
overlap per query” row shows that the overlap of identified sub-
goals between these two data sources is dramatically higher. This
suggests that we may be able to obtain searchers’ intents (often ex-
plicitly represented in session data) by leveraging the advertisers’
efforts embedded in sponsored search data, even though the two
data sources contain seemingly different queries.

As Collections B-1 and B-2 share the same input query set, we
can measure inter-assessor agreement for the manually constructed
ground truth clusters. For this, we compute the well-known F1-
measure, which measures how any given pair of items to be clus-
tered is correctly grouped. Let TP denote the set of query pairs
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Figure 4: F1 / purity graphs for the four methods, produced by varying the number of clusters k from 1 to 40.

from the same ground truth cluster that were correctly grouped to-
gether, FN denote the set for those that were incorrectly separated,
and FP denote the set of query pairs from two different ground truth
clusters but were incorrectly grouped together. Then F1 = 2PR

P+R

where P = |TP|
|TP|+|FP| and R = |TP|

|TP|+|FN| . When the subgoals
from B-1 are treated as the ground truth, the F1 of the subgoals
from B-2 is 0.55. Conversely, when the subgoals from B-2 are
treated as the ground truth, the F1 of the subgoals from B-1 is 0.69.
Thus the assessor agreement between B-1 and B-2 is reasonably
high.

4.4 Evaluation Metrics
In addition to F1, we also computed purity, Normalized Mutual

Information (NMI) and Rand Index (RI) [25] to evaluate the qual-
ity of query clusters that represent subgoals. Purity, which we use
as our primary metric along with F1, measures the homogeneity of
each cluster. Given n queries, a set of k clusters C = {C1, . . . , Ck}
obtained by clustering the queries, and a set of l ground truth clus-
ters that represent subgoals S = {S1, . . . Sl}, purity is given by:
1

n

X

Ci∈C
|Ci ∩ S(Ci)|, where S(Ci) = argmax

Sj∈S
|Ci ∩ Sj |, i.e. the

“dominant” subgoal in Ci.
By definition, high purity can easily be achieved by choosing a

high k (if every cluster contains exactly one query, then the purity
is 1), while high F1 can be achieved if k is close to the number of
ground truth clusters. We thus plot F1 against purity by varying
k, to explore methods that achieve overall high accuracy and high
within-cluster homogeneity.

In addition to the above well-known metrics, we also compute

subgoal recall of a given cluster set C as:
| S

Ci∈C S(Ci)|
|S| .

In contrast to purity, this metric can penalize the case where mul-
tiple clusters correspond to the same dominant subgoal.

5. EXPERIMENTAL RESULTS

5.1 Results with All Related Queries
Figure 4 shows the F1 / purity graphs for AdImp, AdImp (no

cooc), DocClick and DocClick (no cooc), obtained by varying the
number of clusters k from 1 to 40. Here, all of the related queries
that were pooled (See Table 6) were included for evaluation. As
for the Not Relevant and Not Subgoal queries in the ground truth
data, each of them were treated as an independent cluster on its
own when computing the metrics, as we are not interested in mak-
ing the system form clusters out of these queries. From the figure,
it can be observed that AdImp and AdImp (no cooc) achieve higher
purity and F1 compared to DocClick and DocClick (no cooc) for
all three test collections. While our method uses an existing query
clustering algorithm, it is clear from the results that our novel use
of the ads data for the purpose of subgoal mining is highly ef-
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Figure 5: Query clusters produced by AdImp and DocClick,
for the top 20 related queries of the search query “wedding.”

fective. Moreover, it can be observed that utilizing the query co-
occurrences from the session data for clustering is effective in both
AdImp and DocClick.

As an example, Figure 5 contrasts some clusters obtained by
AdImp and those obtained by DocClick for the search query “wed-
ding.” For each method, 80 related queries were clustered with the
target number of clusters k = 20: only the top 20 high impres-
sion queries for AdImp and top 20 high co-occurrence queries for
DocClick are shown in the figure. First, it can be observed that
DocClick tends to produce more queries that (arguably) do not di-
rectly represent subgoals (“gold,” “money,” etc.) when compared
to AdImp. Second, the clusters obtained by DocClick appear some-
what less homogeneous: for example, “kim kardashian wedding”
(“kim kardashian” is the name of a celebrity) and “wedding ring”
are in the same cluster. This happened because the query “kim kar-
dashian wedding” shared the news article about her wedding with
the query “wedding rings” in the clickthrough data. The query clus-
ters for AdImp look somewhat more organized, thanks to the im-
pressions of ads from various wedding services.

5.2 Results with Relevant Related Queries
While the results in Figure 4 appear to suggest that AdImp is

much more effective than DocClick, it should be noted that there
are at least two factors that may have contributed to the difference.
The first is the quality of the related queries to be clustered: re-
call that while AdImp obtains related queries from the sponsored
search data, DocClick (i.e. method by Sadikov et al.) obtains re-
lated queries from the session data, and the latter contains a lot of
Not Relevant queries, as we have shown in Table 6. The second
is the evidence we use for clustering: AdImp uses the ad impres-
sions from the sponsored search data (with query co-occurrences
from the session data), while DocClick uses the document clicks
from the clickthrough data. Figure 4 does not show which of these
factors are contributing by how much.
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Figure 6: F1 / purity graphs for the four methods with relevant queries, produced by varying the number of clusters k from 1 to 20.

Table 7: Comparison of methods with different numbers of
clusters k on Collection A, when only relevant related queries
are clustered. Results that improved significantly (paired t-
test) from DocClick are marked with “*” (p < 0.05) and “**”
(p < 0.01).

AdImp
AdImp

DocClick
DocClick

(no cooc) (no cooc)

k
=

5

purity 0.560* 0.526 0.524 0.528
NMI 0.408** 0.341** 0.257 0.257
RI 0.598** 0.526** 0.452 0.433
F1 0.401 0.367 0.389 0.402
subgoal recall 0.381** 0.369* 0.336 0.339

k
=

1
0

purity 0.729** 0.681* 0.645 0.623
NMI 0.577** 0.518** 0.422 0.390
RI 0.750** 0.696** 0.601 0.550
F1 0.402** 0.361 0.348 0.340
subgoal recall 0.569* 0.546 0.515 0.515

To separate the above two factors, Figure 6 shows the F1 / purity
graphs for the four methods when only relevant related queries are
clustered, for k between 1 and 20. For each search query, let relad
and rel session be the number of relevant queries (i.e. queries clas-
sified as neither Not Relevant nor Not Subgoal) obtained from the
sponsored search data and the session data, respectively. We take
min(relad, rel session) relevant queries from both data sets, so that
the contribution to the pool is equal in size for every search query.
It can be observed that, even if we remove the effect of noise in the
related queries to be clustered, AdImp generally achieves both high
F1 and high purity values.

Table 7 shows several metrics in the same “relevant queries only”
setting for Collection A, when the number of required clusters k
is 5 and 10. Significance differences with DocClick according to
the paired t-test are indicated by asterisks, and the highest metric
value among the four methods are indicated in bold. It can be ob-
served, for example, that AdImp is significantly more effective than
DocClick in terms of all metrics (purity, NMI, RI, F1 and subgoal
recall) when we require 10 clusters. Although not shown in this pa-
per due to lack of space, the results for the other two test collections
are generally similar.

These results suggest that the clustering step of AdImp, which
relies on ad impressions, has advantages over that of DocClick,
which relies on document clicks.

5.3 Results with Queries from the Same Source
The previous experiments showed that AdImp significantly out-

performs DocClick, even if we remove the effect of noise in the re-
lated queries obtained from DocClick. Recall that while DocClick
obtains related queries from the session data and then clusters them
primarily based on document clicks from the clickthrough data,
AdImp obtains related queries from the sponsored search data and

then clusters them primarily based on ad impressions from the same
sponsored search data. Thus, it is possible that the reason why
AdImp works so well is that queries from sponsored search data
can be clustered accurately by leveraging the ad impressions from
the same data. In order to verify this hypothesis, we conducted two
additional experiments: the first clustered only relevant queries that
were obtained from the sponsored search data; the second clustered
only relevant queries that were obtained from the session data.

Figure 7 shows the F1 / purity graphs for these two additional
experiments on Collection A, for k between 1 and 20. First, Fig-
ure 7(a) shows that, for clustering related queries obtained from
the sponsored search data, AdImp is clearly more effective than
DocClick. Moreover, as the difference between AdImp and AdImp
(no cooc) and that between DocClick and DocClick (no cooc) show,
using the query co-occurrences from the session data at the cluster-
ing stage helps. On the other hand, Figure 7(b) shows that, AdImp
is less effective than DocClick for clustering related queries ob-
tained from the session data. This does not contradict with the
above hypothesis (queries from sponsored search data can be clus-
tered accurately by leveraging the ad impressions from the same
data). The main reason why AdImp is less effective for queries
from the session data is probably due to low coverage of spon-
sored search data: some queries have few or no associated ads.
However, from the Figure 7 (b), while DocClick does not seem to
benefit much from the use of query co-occurrences (compare with
DocClick (no cooc)), the same statistics boost the performance of
AdImp. This implies that session data can compensate for the low
coverage of sponsored search data.

5.4 Ad Impressions vs. Ad Clicks
As we explained in Section 3.3, we calculated the query-to-ad

transition probability based on ad impressions. One alternative way
of calculating it is the use of ad clicks, which means the number of
times ads were clicked by the search engine users. To compare the
effect of ad impressions with ad clicks, we implemented two addi-
tional methods, namely, “AdClick” and “AdClick (no cooc),” both
of which cluster the related queries as AdClick and AdClick (no
cooc) do, except that both methods use the top 15 most clicked ads
for constructing a query-ad graph, and calculate query-to-ad transi-
tion probability based on the number of times the ads were clicked.
Figure 8 shows the results of these four methods, by varying the
number of clusters k from 1 to 20 in the same “relevant query”
setting in Section 5.2 for Collection A. From the figure, we can
see that AdImp consistently outperforms AdClick, and AdImp (no
cooc) also outperforms AdClick (no cooc) in terms of purity and
F1. This result is probably due to the sparseness of ad clicks. It
is well known that CTR of ads are much less than those of docu-
ments (i.e. organic search results). Thus, it is hard to obtain reliable
number of clicks for clustering related queries from the sponsored
search data. Note, however, that even AdClick generally achieves
both higher F1 and purity than DocClick shown in Figure 6(a).
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Figure 8: Comparison with ad impressions and clicks. The re-
sults were produced by AdImp on Collection A, for k between
1 and 20, when only relevant related queries are clustered.

5.5 Discussion
Our experiments showed that while AdImp generally outper-

forms DocClick, it is less effective for clustering related queries
from the session data (See Section 5.3). As we discussed with Ta-
ble 6, while the overlap of subgoals between queries from the spon-
sored search data and those from the session data is high, there are
also subgoals that were obtained from only one of the data sources.
On average across our three collections, 1.16 and 2.18 subgoals per
search query were obtained from pure session data and from pure
sponsored search data, respectively. In this subsection, we discuss
some actual subgoals for these different cases.

Table 8 provides some examples from our three test collections.
Table 8(a) shows subgoals that were formed only from the session
data queries. As queries such as “causes of back pain” and “moving
to do list” did not trigger any ads, the subgoals learn about cause
and make a TODO list could not be obtained from the sponsored
search data. Even if we increase the amount of sponsored search
data, it is unlikely that our method will identify such subgoals as
they are not strongly related to advertisement.

Table 8(b) shows a few example search queries for which both
sponsored search data and session data were successful. Thus, both
ad impressions and document clicks can successfully group queries
like “moving truck” and “truck rental” together.

Table 8: Example of subgoals obtained: Each subgoal is a clus-
ter of related queries with a manually assigned subgoal label.

(a) Subgoals that only contain queries from the session data.
Collection B-2

search query back pain relief
subgoal label learn about cause

related queries back pain causes, causes of back pain
Collection B-1

search query moving
subgoal label make a TODO list

related queries moving to do list, moving list of things to do,
moving checklist, moving advice, ...

(b) Subgoals that contain queries obtained from both data sources.
Collection B-1

search query learn spanish
subgoal label build Spanish vocabulary

related queries learn spanish words, spanish dictionary,
spanish verbs, spanish vocabrary, ...

Collection B-2
search query moving
subgoal label rent a truck

related queries moving truck, ryder, truck rental, ...

(c) Subgoals that only contain queries from the sponsored search data.
Collection A

search query relieve stress
subgoal label visit a zen garden

related queries zen garden
Collection A

search query quit smoking
subgoal label have acupuncture treatment

related queries acupuncture, acupuncture quit smoking,
acupuncture stop smoking

Finally, Table 8(c) shows a few subgoals that were obtained only
from the sponsored search data. Note that a search engine user
who is looking for ways to “relieve stress” or to “quit smoking”
may not even be aware that solutions such as visit a zen garden
or have acupuncture treatment exist. Thus, it is the “wisdom
of advertisers” that helps our method to propose such solutions to
the searcher. It would be very difficult to find these “unexpected”
solutions in the session data: if the searchers are unaware of these
solutions, they are highly unlikely to issue queries about them.

6. CONCLUSIONS
In this study, we defined the problem of mining subgoals of a

given search goal from data by means of query clustering, and pro-
posed to utilize sponsored search data for this purpose. Our method
(AdImp) first obtains related queries from the sponsored search
data, and then clusters them based on ad impressions from the same
data as well as query co-occurrences from session data. This was
compared with a similar state-of-the-art method [28] (DocClick)
that first obtains related queries from the session data, and then
clusters them based on document clicks from clickthrough data as
well as query co-occurrences from session data. Our experimental
results using three in-house test collections showed that (1) related
queries obtained from sponsored search data are more relevant than
those obtained from session data; and (2) AdImp significantly out-
performs DocClick in terms of purity, NMI, Rand Index, F1 and
subgoal recall.

There are several limitations to the present study. First, this study
did not address the problem of generating a label for each query
cluster (e.g. [26]). While our current representation of a subgoal is
in the form of a cluster of several queries, it would be useful for
the searcher if we could also provide an explicit label for each sub-



goal. We plan to tackle this problem by leveraging the ad contents:
for example, the phrase “get some exercise” shown in Figure 1 is
probably a good candidate as a subgoal label given the query “lose
weight.” Next, although we mentioned in Section 1 that around
68% of our head queries had some ads displayed with the organic
search results, the applicability of our method is probably much
lower than this number suggests. As we described in Section 4.3.1,
only 39.1% of our candidate verb-oriented queries were annotated
with multiple subgoals by at least one assessor. On a similar note,
Jones and Klinkner [21], who defined the hierarchy of search mis-
sions and goals (See Section 2.4), also reported that only 20% of
user queries from their Yahoo! query log were associated with hi-
erarchically organized needs. Moreover, our method does not work
if the query is not included in the sponsored search data, which is
generally smaller compared to clickthrough and session data (See
Table 3). However, although the fraction of queries that our method
can handle may not be large, we argue that these queries represent
a very important query segment, for which current search engines
require breakthroughs.

As future work, we would like to refine our subgoal mining al-
gorithm. As this study focused on verifying the usefulness of spon-
sored search data as a resource, we applied an existing query clus-
tering algorithm. Thus, we did not have any explicit mechanisms,
for example, for classifying subgoals of a given search query, su-
pergoals of the query and queries that share the same goal with the
query. Moreover, as we mentioned in Section 1, while some types
of subgoal wholly accomplish the original search goal (e.g. “do
physical exercise” may be a good solution to “lose weight”), oth-
ers only partially accomplish the original search goal (e.g. “book
flights” may be one step towards accomplishing the “travel Lon-
don” search goal, but other subtasks such as “book a hotel” are
also required). Furthermore, there may be temporal dependencies
among these subtasks/subgoals: some subgoals need to be satisfied
before others. Mining these different types of subgoal would be
useful for improving search effectiveness and experience.
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