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Abstract—We propose a method to generate effective query
suggestions aiming to help struggling search, where users expe-
rience difficulty in locating information that is relevant to their
information need in the search session. The core is identifying
struggling component of an on-going struggling session and min-
ing the effective representations of it. The struggling component
is the semantic component of information need for which the
user struggled to find an effective representation during the
struggling session. The proposed method identifies the struggling
component of given on-going struggling session and mines the
sessions containing the identified struggling component from a
query log to build a struggling flow graph. The struggling flow
graph records users’ reformulation behaviors for the terms of
the struggling component, through struggling flow graph we
can mine effective representations of the struggling component.
The experimental results demonstrate that the proposed method
outperforms the baseline methods when it can use two or more
queries in a struggling session.

I. INTRODUCTION

Search engines have been widely used to find information
and solutions to problems. However, many users sometimes
struggle to locate relevant information to their problem. This
search process is referred as struggling search [1]. In strug-
gling search, the user struggles to reformulate query many
times for the information need. For example, Table I(a) shows
a struggling session in which a user attempted to find informa-
tion about where did donut come from. Unfortunately, although
the user attempted to reformulate his/her query many times,
he/she could not locate the required information and gave
up. Hassan et al. reported that, among long search sessions,
36% are struggling sessions and many users fail to locate the
required information [1]. Therefore, it is important for search
engines to help users in struggling search effectively.

Query suggestion is an effective way to help a user re-
formulate query. Many query suggestion methods have been
proposed and proven very useful. However, existing query sug-
gestion methods have limitations when addressing struggling
search. One problem is that most queries in struggling sessions
are failed queries with few clicks, which means that existing
methods that rely on query terms and clicked documents are
likely to generate ineffective suggestions and may lead to
another failed trial. Another problem is that the information
needs of many struggling sessions are long-tail information
need, which means that no user or few users have searched for
the information previously, thus, there are no effective queries
in the query log.

TABLE I: Examples of struggling sessions (terms in italics are
the struggling phrase of the query).

session (a) session (b)

Query Query

the donut <failed> history of the leprechaun <failed>

the donut came from
where

<failed> leprechaun where did the
name come from

<failed>

history of the donut <failed> history of the leprechaun’s
name origin

<successful>

In this paper, we propose a query suggestion method aiming
to help struggling search. The core idea of our method is
identifying the struggling component of an on-going struggling
session and mining effective representations of the struggling
component to generate query suggestions. The struggling
component is the semantic component of information need
for which the user struggled to find an effective representation
during the session (See Section III). For example, there are two
semantic components in the information need of the session
shown in Table I(a): came from, and donut. Among these com-
ponents, the user struggled to find an effective representation
for came from. The same struggling component may occur
in search sessions for different information needs. As shown
in Table I(b), another user attempted to find out where did
the name of leprechaun come from. This user also struggled
to find an effective representation for came from, similar to
the user in Table I(a). However, this user finally found out an
effective representation for the struggling component: history
origin, which can also enable the user in Table I(a) to locate
relevant information using query “the donut history origin”.

Given an on-going struggling session, we first identify its
struggling component and retrieve sessions with the same
struggling component from a query log. We then build a
struggling flow graph by aggregating the struggling refor-
mulation behaviors for terms of the struggling component.
Further we can mine effective representations of the struggling
component to generate effective query suggestions for the on-
going struggling session.

The contributions of this paper can be summarized as
follows.

• We propose a query suggestion method to help struggling
search.

• We introduce the concept of struggling component and
a method to identify the struggling component of a



struggling session, which enables us to understand which
part that the user struggles at.

• We introduce the struggling flow graph, which is a graph
that records multiple users’ struggling reformulation be-
haviors for the terms of the struggling component.

The remainder of this paper is organized as follows. In
Section II, we introduce related work including query sugges-
tion, struggling search, and long-tail search. In Section III, we
introduce and define several key concepts used in this paper. In
Sections IV and V, we describe how we identify the struggling
component and generate effective query suggestions, respec-
tively. In Section VI, we explain our experiment and analyze
the results. The paper is concluded in Section VII.

II. RELATED WORK

Query Suggestion. One main approach to query suggestion
is mining click-through data. Beeferman and Berger [2] built
a bipartite graph based on click-through data and clustered
queries with the same clicked documents because these queries
are likely to have the same search intent. Baeza-Yates et al. [3]
clustered queries based on their term-weight vector calculated
from queries as well as their clicked documents. The queries
in the same cluster are ranked and considered possible query
suggestions. Mei et al. [4] ranked queries using the hitting
time on the bipartite graph to ensure semantic consistency
between the original query and query suggestions. Cao et
al. [5] summarized queries and mapped sessions to concepts
based on click-through data to build a concept sequence
suffix tree, which is used to obtain the context of the current
search in order to generate context-aware query suggestions.
Another main approach to query suggestion is mining query
reformulations of search sessions. Boldi et al. [6] used the
query flow graph [7] to generate query suggestions. Each
node in a query flow graph represents a query and each edge
between two nodes means that they are consecutive in at least
one session. A short random walk is applied to the graph to
generate query suggestions. Jones et al. [8] proposed a model
to generate a set of query substitutions by replacing the whole
query or parts of the query with related phrases.
Struggling Search. Struggling search was first formally intro-
duced by Hassan et al. [1]. They analyzed the characteristics
of struggling sessions and proposed a model to distinguish
struggling sessions and exploratory sessions [9]. Task difficulty
is the main factor that leads to struggling search. Carmel
et al. [10] investigated what makes a query difficult, by
capturing and analyzing the relationships among the main
components of a topic: the textual expression (the query or
queries), the set of documents relevant to the topic, and
the entire collection of documents. Aula et al. [11] studied
behavioral signals when a user has difficulty with a search
task. They found that, when finding relevant information is
difficult, users attempt to formulate more diverse queries, use
advanced operators more frequently, and spend more time on
viewing search results pages. Liu et al. [12] explored the effect
of task difficulty on search behavior for users with different
levels of domain knowledge. Although many studies have been

done on understanding task difficulty and how users behave
when experiencing difficulty, few studies have attempted to
find ways to assist struggling search. Liu et al. [13] used a
learning-to-rank approach to rank query suggestions generated
by previously proposed method [5] for difficult search, which
is limited by ineffective click-through information when facing
struggling search because most queries in struggling search
are failed and without effective click. Odijk et al. [14] studied
the characteristics of search tasks where users struggled and
proposed method to predict user’s query reformulation types.
Long-tail Search. Yao et al. [15] conducted an empirical study
of user behavior with rare queries using a large-scale query
log and proved significant differences among many features,
including query length and search results. To generate query
suggestions for long-tail queries, Bonchi et al. [16] [17] built a
center-piece sub-graph containing term nodes and query nodes
with two types of connections: term-query connections and
query-query connections. A random walker starts with the
terms in a given query to generate query suggestions even
if the query has not occurred previously. To extend the reach
of query suggestion for long-tail queries, Szpektor et al. [18]
introduced the concept of query template and proposed an
enhanced query flow graph [7] with query templates, through
which query suggestions are available even for the long-tail
queries that do not have succeeding query. Although both the
method proposed by Bonchi et al. [16] [17] and the method
proposed by Szpektor et al. [18] are effective on generating
query suggestions for long-tail queries, they do not focus on
the effectiveness of query suggestions to help locate relevant
information, which is the key to helping struggling search.

III. PRELIMINARIES

In this section, we first explain the concepts of query log,
session, and struggling session used in this paper. We then
introduce the key concepts for modeling struggling search in
order to clarify our approach to generating query suggestions.
Query log: A query log is a log that records user search
queries and document clicks with their timestamps. A typical
format of a record in a query log is <user id, query, clicked
document, timestamp>. In this paper, we use the AOL query
log [21], which contains the search behaviors of approximately
650,000 users over 3 months, as our primary dataset. Note that
the proposed method is not specific to the AOL query log, but
is applicable to other query logs.
Session: A session represents a topically coherent session
during which the user’s information need does not change.
One well-known way to extract sessions from a query log is to
use a predefined time threshold, e.g., 30 min of inactivity [19],
but a session extracted in this way may contain search queries
and document clicks for different information needs [20]. To
ensure that sessions are topically coherent, we used the settings
in [1] with a small adjustment: two consecutive queries are
topically coherent if they are no longer than 10 min apart
and they must share at least one non-stopword term. In the
rest parts of this paper, we simply use session to represent a
topically-coherent session.



TABLE II: Example components.

Component Representations

come from come from, originate from, history, invent, etc.
troubleshoot not work, stop work, fix, repair, stuck, problem,

troubleshoot, etc.
gas mileage gas mileage, mpg, fuel mileage, miles per gallon,

kilometer per liter, etc.

Struggling session: A struggling session is a session in which
the user experiences difficulty in locating information that is
relevant to their information need. Typical user search behav-
iors in a struggling session are reformulating queries many
times and spending significant time on the search process [1].
Examples are shown in Table I.

Here, we introduce the key concepts for modeling struggling
search.
Information need: An information need is the need to locate
information in order to satisfy a user’s requirement. Example
information needs are as follows: where did donut come from,
where did the name of leprechaun come from and what to do
when your car fan stops working, etc.
Component: A component is a semantic unit that corresponds
to things in the real world, such as concepts, objects, actions,
and relations. In this work, we model that an information need
comprises a set of components. For example, the information
need where did donut come from comprises two components,
donut, came from.

Each component has a set of representations, which are
used by users to describe the component in their queries. For
example, to describe the component came from, users may use
came from, history, origin, etc. More examples are shown in
Table II.
Struggling component: In a struggling session, we define the
struggling component as the component of information need
for which user has difficulty in finding an effective represen-
tation. For example, for the session shown in Table I(a), the
information need of the session is where did donut come from,
which has two components, donut, came from. During the
session, the user frequently reformulated the representations
of the came from component, which may mean that the user
had difficulty in finding an effective representation of this
component. Thus, came from is the struggling component in
this session.
Struggling phrase: Given a query in a struggling session,
the struggling phrase of the query is defined as the set of
terms in the query that represent the struggling component
of the session. Note that the struggling phrase of a query
may be empty. Table I shows examples of struggling phrases
in struggling sessions. For example, the struggling phrases
of the queries in Table I(a) are ϕ, {came from}, {history},
respectively.

IV. IDENTIFYING STRUGGLING PHRASE

In this section, we explain how we identify the struggling
phrases of a struggling session.

q1  history of the leprechaun

q leprechaun where did the name come from

q3  history of the leprechaun’s name origin

SP

SP

SP

NSP

NSP NSP

NSPSP

Fig. 1: Example of struggling phrase classifier.

A. Problem statement

Given a struggling session with a sequence of queries,
our objective is to identify the struggling phrase of each
query. To this end, we take a machine learning approach and
build a struggling phrase classifier. Specifically, for each non-
stopword term in a query of a struggling session, we classify
it into one of two classes, struggling phrase (SP) and non-
struggling phrase (NSP), as shown in Figure 1.

B. Features

We have designed several features for the struggling phrase
classifier, as shown in Table III.

• Term-level features: These features describe the char-
acteristics of a term itself. For example, a term with
many synonyms has a higher probability to be struggling
phrase because users may struggle to find an effective
representation from these synonyms.

• Query-level features: These features describe a term’s
characteristics in a query. A term that did not occur in
preceding or succeeding queries but had similar terms
in the preceding and succeeding queries has a higher
probability to be struggling phrase, as the term may be
replacement of a term in preceding query, or was replaced
by another term in succeeding query.

• Session-level features: These features describe a term’s
characteristics in a session. A term that the user gave up
quickly has a higher probability to be struggling phrase,
and a term that the user kept in every query of the session
has a higher probability to be a non-struggling phrase.

• Global-level features: These features describe term’s
characteristics in the whole query log. If the struggling
sessions ratio among all sessions the term occurred is
high, then the term has a higher probability to make
users struggle. If a term’s occurrence ratio is low in
many sessions it occurred, it may mean that many users
replaced that term with other terms in their sessions.

C. Experimental setup

Data. We manually extracted 128 struggling sessions from the
AOL query log, which contained 622 queries. For each query,
we manually labeled each non-stopword term as struggling
phrase or non-struggling phrase by checking the term, the
query, the search results, and the context in the session, as-
suming we were the searcher of the search session. We trained
the classifier with these labeled data to identify struggling
phrase and non-struggling phrase of each query in a struggling
session.
Baseline. For the baseline, we used the frequency-based rule to



TABLE III: Struggling phrase classifier features.

Name Description
Term level features

isEntity whether the term refers to an entity
POS part-of-speech of the term
synonymNum number of synonyms in WordNet [22]

Query level features
inQueryPos the position order in query
maxNeighborSim the maximum similarity between terms in

preceding and succeeding queries
Session level features

sessionOccurrenceRatio ratio of queries in which the term occurred
in session

sessionFirstOccurrence order number of the query in which the term
first occurred in session

Global level features
strugglingSessionRatio ratio of struggling sessions among all ses-

sions the term occurred
globalOccurrenceRatio average of occurrence ratio among all ses-

sions the term occurred
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Fig. 2: Precision of struggling phrase classifier.

identify the struggling phrase of a query. This method classifies
a term as a non-struggling phrase only when all queries in the
session contain the term. Otherwise, the term is classified as
a struggling phrase.
Setting. We used the support vector machine with a linear
kernel to train the classifier. 10-fold cross-validation was used
for this experiment. Note that the number of queries in a
session influences the performance of both the classifier and
the frequency-based rule. To investigate the effect of the
number of available queries of a session on the classification
performance, we experimented with several cases by changing
the number of queries in a session (e.g., the first query, the
first two queries, the first three queries . . ., all queries).

D. Experimental results

Figure 2 shows the precision of classification by the clas-
sifier and the frequency-based rule. The x-axis is the number
of queries of sessions used by each method.

As can be seen, the classifier outperformed the frequency-
based rule in terms of precision. The precision of the classifier
increased with an increased number of queries. The precision
reached 0.82 when the classifier used all the queries in
sessions. In contrast, the precision of the frequency-based rule
increased when available queries increased from one query
to two queries, but decreased with further increased number

the donut
the donut came from where

history of the donut

who invented the use of fingerprints
the history of fingerprinting

aids history
history of aids
origin of aids

beginning of aids

shih tzu history
all about the shih tzu
the origin of the shih tzu

orgination of flowers of the 20th century

the beginning of flowers

origin of flowers

jimony test
first jominy test
jominy test invented

…

history of the leprechaun
leprechaun where did the name come from 

history of the leprechaun's name origin

…

…

…

Query log

On-going 
struggling session

Fig. 3: Mining sessions with the same struggling component.

of queries. One reason for this is that users tended to slightly
modify the terms of non-struggling phrases later in the session
after several times of failure.

V. GENERATING EFFECTIVE QUERY SUGGESTION

In this section, we first explain how we mine sessions that
have the same struggling component as the on-going struggling
session. We then introduce the struggling flow graph, how
to build the graph, and mine effective representations of the
struggling component to generate effective query suggestions.

A. Mining sessions with the same struggling component

The same struggling component may occur in sessions
with different information needs. We have hypothesized that
sessions with the same struggling component have similar
struggling phrases, and share the same effective representa-
tions for the struggling component. Two examples have been
shown in Table I(a) and Table I(b), in which the first user
searched for where did donut come from and the second
user searched for where did the name of leprechaun come
from, both struggled to find an effective representation of the
struggling component came from.

Given an on-going struggling session, we want to find
sessions with same struggling component as the on-going
session. Figure 3 illustrates how we mine sessions with same
struggling component as the on-going session from a query
log. Specifically, given an on-going struggling session, we first
identify its struggling phrases and retrieve sessions that contain
at least two queries and at least one identified struggling phrase
in their queries from a query log. Then, we again extract the
struggling phrases of each retrieved session to obtain more
sessions with same struggling phrases in a breadth-first-search
manner until no session for retrieving or with more than 1,000
retrieved sessions.

B. Struggling flow graph

Having obtained sessions with possibly the same struggling
component as the on-going session, we then build a struggling
flow graph with these sessions, which is a graph extending
the query flow graph [6]. The purpose of the struggling flow
graph is to aggregate multiple users’ reformulation behaviors
for the terms of a struggling component and mine the effective
representations for the struggling component.

Here, s0 denote an on-going struggling session for which
we want to provide query suggestions, S = {s1, . . . , sn}
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Fig. 4: Example of struggling flow graph.

denote the set of sessions mined by the method described in
Section V-A , and V = {v1, . . . , vm} denote the unique set
of struggling phrases obtained from S by using the classifier
described in Section IV.

Formally, the struggling flow graph for sessions S is repre-
sented as weighted directed graph GS = (V,E, ω), where:

• V is the set of nodes in the graph. Each node corresponds
to a struggling phrase.

• E ⊆ V × V is the set of directed edges. If there is
at least one session where two struggling phrases vi and
vj appear consecutively in S, there is a directed edge
from vi to vj . In addition, for every vi ∈ V there is a
self-transitive edge from vi to vi.

• ω : E → (0..1] is a weighting function that assigns
a weight ω(vi, vj) to each pair of struggling phrases
(vi, vj) ∈ E.

C. Finding effective representations by struggling flow graph

Here, we describe how we find the effective representations
of the struggling component using the struggling flow graph.
As explained previously, the struggling flow graph is an
extension of the query flow graph. In the query flow graph,
each node represents a query q and the weight of an edge
between two queries qi and qj is determined by the probability
that the user who issued query qi and reformulated it as query
qj in sessions. To generate query suggestions for a given query
q, a short random walk starting from query q is applied to the
query flow graph. The query suggestions are ranked based on
their value of stationary distribution.

We follow the idea of the query flow graph, except for the
following differences. Differing from the query flow graph,
which aggregates query reformulation of all sessions in the
query log, a struggling flow graph aggregates only the refor-
mulation of terms for a struggling component from a set of
sessions with same struggling component. This allows us to
track the term-level reformulation for single struggling com-
ponent, which may address the problem of long-tail queries
and keep query suggestions consistent. In addition, the high
failure rate of struggling search increases the probability of
generating failed query suggestions by the random walk in
the graph. To address this problem, we incorporate information
about whether a phrase appears to be successful or a failure
into the graph. Specifically, we set a self-transition probability
for each node based on our assumption on effective struggling
phrases, a possibly effective struggling phrase based on our

assumption will be set with higher self-transition probability
and is likely to obtain a higher random walk value in the
stationary distribution.

D. Preparing transition probabilities

In this subsection, we describe how we compute the tran-
sition probabilities among the nodes in the struggling flow
graph. The assumption behind mining effective struggling
phrases is that if a struggling phrase is effective, more users
who input a query containing it will stop searching as it is
effective in helping the users find relevant pages with the
information they require. Similarly, if a struggling phrase is
ineffective, more users who input a query containing it will
continue searching as it will fail to help the users find the
relevant pages. Based on this assumption, we first set the
self-transition probability of each node (struggling phrase) as
the ratio of sessions that end with the struggling phrase with
effective clicks among all the sessions it occurred. Here, we
regard that a query had an effective click if a user clicked at
least one document from its search result page and spent more
than 30 seconds at the document. We define the self-transition
probability of struggling phrase vi as follows:

ωoriginal(vi, vi) =
e(vi)∑

vk∈V N(vk, vi)
, (1)

where e(vi) represents the number of sessions that end with
a query containing struggling phrase vi with effective clicks
in sessions S and N(vk, vi) represents the number of sessions
where vk and vi occur consecutively in sessions set S.

The problem of the above equation is that the value of
ωoriginal(vi, vi) is not trustworthy if the struggling phrase
vi occurred only a few times. For example, suppose that a
struggling phrase was input only once in a query and the
user who input the query stopped searching after inputting
it. Although 100% of users who input a query containing it
stopped searching, it is not guaranteed to be effective as that
the user might stop just because he/she gave up. To handle this
problem, we define the trustworthiness degree of a struggling
phrase to evaluate how trustworthy the information of the
struggling phrase is. The trustworthiness degree td(vi) of a
struggling phrase vi is defined as:

td(vi) = min (1.0,
e(vi)

θ
) ,

where θ is a threshold, which we empirically set to 16 in this
work. As a struggling phrase vi occurs more times, td(vi)
approaches 1.0.

Based on the trustworthiness degree, we modify the self-
transition probability of a struggling phrase. If a struggling
phrase is trustworthy enough, we use the same self-transition
probability as described in Equation (1). If the trustworthiness
degree of a struggling phrase is low, then its self-transition
probability will be cut based on its trustworthiness degree.
The modified self-transition probability ω(vi, vi) of struggling
phrase vi is defined as:

ω(vi, vi) = td(vi)ωoriginal(vi, vi) .



For the probability cut from the original self-transition proba-
bility, we averagely distribute it to all other struggling phrases
in the struggling flow graph as a random jump probability
from vi, which is denoted as rj(vi):

rj(vi) =
ωoriginal(vi, vi)− ω(vi, vi)

|V | − 1
.

Finally, we set the transition probability between two different
struggling phrases vi and vj (i ̸= j) as follows:

ω(vi, vj) = (1− ωoriginal(vi, vi))
N(vi, vj)∑

vj∈V N(vi, vj)
+ rj(vi) .

Note that the both weighting functions w(vi, vi) and w(vi, vj)
are already normalized such that their values represent the
transition probability among nodes.

E. Generating query suggestions

In this subsection, we describe the overall method to gen-
erate query suggestions for a given on-going session. Given
an on-going session s0 = {q1, . . . , ql}, where l represents
the number of queries in the session, we first identify the
struggling phrases of the session using the method described
in Section IV. We then mine the set of sessions S using the
method described in Section V-A and build the struggling flow
graph GS . Then, we apply a random walk to the graph and
extract the top k struggling phrases according to their random
walk values in the stationary distribution. Finally, we generate
the query suggestions by replacing the struggling phrase of
the last query in the on-going sessions with each of the top k
struggling phrases.

VI. EXPERIMENT

In this section, we introduce an experiment conducted to
evaluate the effectiveness of the query suggestions generated
by the proposed method. For the baseline, we used the query
flow graph proposed by Boldi et al. [7] and the similarity-
based method. The query flow graph is a directed graph
that aggregates a query log and has been proven very useful
for query suggestions and user behavior analysis. For the
similarity-based method, given an on-going struggling session,
we first compute the similarity between the last query of the
session and queries in the query log. We then rank the queries
based on their similarity and suggests the top k similar queries
as query suggestions. We followed the method used in [1]
to compute the similarity between two queries qi and qj as:

|qi∩qj |
|qi|+|qj |−|qi∩qj | , where |q| represents the number of terms
in the query. To calculate the number of matches in query
qi and qj , two terms were considered as matched if any of
following criteria are met: (1) exact match, (2) approximate
match, (3) lemma match, (4) semantic match. For the proposed
method of the struggling flow graph, we also conducted exper-
iments with different struggling phrase identification methods
in order to investigate their influence on query suggestion.

Thus, we compared the following four methods in the
evaluation: (1) query suggestions using the query flow graph,
which is denoted as QFG, (2) query suggestions based

TABLE IV: Examples sessions used in experiments.

Struggling
component

Example session

gas mileage
q1: lincoln mkz 2007
q2: lincoln 2007 mkz mileage
q3: 2007 mkz lincoln epa

origin
q1: where does the name bonnaroo come from
q2: bonnaroo hisotry
q3: bonnaroo history

troubleshoot
q1: my serial mouse does not work
q2: parrell mouse port not recognized
q3: how to fix mouse in registry

on the similarity-based method, which is denoted as SIM,
(3) query suggestions using the struggling flow graph with the
frequency-based rule to identify struggling phrases, which is
denoted as SFG-frequency, and (4) query suggestions using the
struggling flow graph with the classifier to identify struggling
phrases, which is denoted as SFG-classifier.

A. Evaluated sessions

To evaluate the effectiveness of the proposed method with
diverse struggling sessions, we first manually prepared ten
types of struggling components by scanning the struggling
sessions sampled from the AOL query log. For each strug-
gling component, we manually extracted as many struggling
sessions with the struggling component as possible from the
AOL query log. Finally, for each struggling component, we
randomly sampled 10 struggling sessions from the extracted
sessions and used them in the experiment (successful queries
were removed for the successful struggling sessions). In total,
100 sessions were used for evaluation and removed from the
query log. Table IV shows examples of struggling components
and their corresponding session.

B. Ground truth

We defined a query suggestion that enables a user to locate
relevant pages as an effective suggestion. To create ground
truth query data, for each session described in the previous
subsection, we first simulated the session user and attempted
to understand the user’s search intent as best as possible. For
each of the top 10 query suggestions generated by a method,
we issued the suggestion to a commercial search engine and
examined whether there were relevant pages for the user’s
information need in the first page of the search results. If
there was at least one relevant document in the search results
page, the suggestion was considered effective; otherwise, the
suggestion was considered ineffective.

C. Evaluation metrics

The following metrics were used to measure the perfor-
mance of query suggestion methods.

• Effective support rate@10: The ratio of sessions in
which one or more effective query suggestions were
offered in the top 10 query suggestions.

• MRR@10: Mean reciprocal rank (MRR) of the top 10
query suggestions.
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Fig. 5: Effective support rate@10.
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Fig. 6: MRR@10.
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Fig. 7: nDCG@10.

• nDCG@10: Normalized discounted cumulative gain
(nDCG) of the top 10 query suggestions. Here, we used
binary relevance for the evaluation. An effective query
suggestion had relevance of 1, while an ineffective query
suggestion had relevance of 0.

As for MRR@10 and nDCG@10, we regarded these metrics
as 0 when a method failed to generate any query suggestion.

D. Setting

We used all the labeled struggling sessions prepared in
Section IV-C to train the struggling phrase classifier, which
was used to detect struggling phrases of a session. In addition,
as with the experiment explained in Section IV-C, we experi-
mented with several cases by changing the number of available
queries in a session to investigate its influence on the query
suggestion performance. Note that there is no overlap between
the sessions prepared in Section IV-C and those prepared in
Section VI-A.

E. Results

Figure 5 shows the results of effective support rate@10. It
can be observed that, when we can only use the first query in
the session, SIM outperformed the other methods in terms of
generating effective query suggestions (i.e. effective support
rate@10). One possible reason why SIM outperformed SFG-
classifier and SFG-frequency is that the proposed method
relies on the struggling phrases in the session. The strug-
gling phrases identified only from a single query might be
too ambiguous to mine the appropriate representation of the
struggling component.

When we can use two or more available queries in the
session, both SFG-frequency and SFG-classifier outperformed
QFG and SIM in terms of generating effective query sugges-
tions. One main reason why SFG-frequency and SFG-classifier
outperformed QFG is many queries in struggling search are
long-tail queries, which may have not occurred in the query
log. Since QFG relies on the occurrence of the query and query
transition, it often failed when generating query suggestions
for struggling session. SIM does not rely on the occurrence
of the query so it is able to generate query suggestions
for most struggling sessions. However, most queries during
struggling sessions were failed queries. A query that is similar
to a failed query is likely be another failed query, so many
query suggestions generated by SIM were ineffective. We

also can see that SFG-classifier outperformed SFG-frequency,
surprisingly the query suggestion performance difference is
much bigger than that of the precision on identifying strug-
gling phrases between the classifier and the frequency-based
rule shown in Figure 2. Two possible reasons of this are:
(1) we recursively applied the struggling phrase identification
method to the retrieved sessions, which made the influence
of the precision difference on identifying struggling phrases
become bigger, and (2) the wrong identification of struggling
phrase sometimes introduced many noisy sessions and greatly
worsened the query suggestion performance.

Figures 6 and 7 summarize the results of MRR@10 and
nDCG@10, respectively. The error bars in Figures 6 and 7
represent the standard error of the mean (SEM). Significant
differences between SFG-classifier and the baselines found by
the two-sided Randomized Tukey’s HSD test [23] at significant
level α = 0.1 and α = 0.05 are marked with “*” and
“**”, respectively. From Figures 6 and 7, we can see that
SFG-classifier outperformed QFG and SIM when we can
use two or more queries in the session. When using all the
queries in the session, QFG achieved MRR@10 of 0.038 and
nDCG@10 of 0.045, SIM achieved MRR@10 of 0.054 and
nDCG@10 of 0.075, SFG-frequency achieved MRR@10 of
0.049 and nDCG@10 of 0.090, and SFG-classifier achieved
the best performance with MRR@10 of 0.090 and nDCG@10
of 0.149. While SFG-classifier achieved the best performance,
we also found its performance was still not high. This indicates
that the query suggestion for struggling search is still difficult
and we need to further tackle the problem.

An example of query suggestion result is shown in Table V,
which was generated for the first struggling session in Table IV
when the number of available queries was two, where the user
struggled to find the gas mileage of lincoln 2007 mkz. The
query suggestions generated by QFG are shown in Table V(a),
and those generated by the SFG-classifier are shown in Ta-
ble V(b). As can be seen, no query suggestion was generated
by the QFG because the queries of the first session in Table IV
never occurred in other sessions in the query log. While the
SFG-classifier method first identified struggling component of
the struggling session, and then mined effective representations
of it using struggling flow graph to generate query suggestions,
which successfully generated several effective query sugges-
tions for the user’s information need.



TABLE V: Query suggestions for the first struggling session
in Table IV.

Suggestions

Not available.

(a) Suggestion by QFG.

Suggestions

1st: lincoln 2007 mkz gas mileage
2nd: lincoln 2007 mkz distance
3rd: lincoln 2007 mkz drive
4th: lincoln 2007 mkz calculator
5th: lincoln 2007 mkz best mileage
6th: lincoln 2007 mkz mile
7th: lincoln 2007 mkz fuel mileage

(b) Suggestion by SFG-classifier.

F. Limitations

As the experimental results show, SFG-classifier achieved
the best performance when it could use two or more queries in
the session. However, the performance of SFG-classifier was
still not high due to the several limitations. The first limitation
is that the current SFG-classifier method can only support
the struggling sessions in which users mainly struggle at a
single component. If the user struggles at multiple components
during the session, SFG-classifier may fail to distinguish these
multiple struggling components and treat them as a single
component, which will lead to generate ineffective query
suggestions or even no query suggestion. For example, SFG-
classifier failed to generate any query suggestions for the
third struggling session shown in Table IV, because the user
struggled at two components (i.e. serial mouse and does not
work). SFG-classifier wrongly treated these multiple strug-
gling components as a single struggling component and failed
to match any past sessions with the same struggling component
in a query log. To solve the problem, we need to improve our
model so that it can identify multiple struggling components
and find the effective representations for each component. The
second limitation is that SFG-classifier introduces many noisy
sessions that do not share the same struggling component of
the on-going struggling session during mining sessions with
the same struggling component, and we are considering an
effective method to remove these noisy sessions. The third
limitation is that SFG-classifier relies on the existence of past
successful sessions which share same struggling component
with on-going struggling session in the query log. There are
struggling sessions that have unique struggling component
and no user struggled at that component before, so the SFG-
classifier will fail to generate effective query suggestions for
these struggling sessions.

VII. CONCLUSION

In this paper, we proposed a query suggestion method for
struggling search based on identifying the struggling phrases
of a struggling session and mine effective representations for
them using struggling flow graph. We conducted an experi-
ment to investigate the effectiveness of the proposed method
compared to baselines. The experimental results show that the
proposed method outperformed the baselines when the method
can use two or more queries of struggling session.

From the experiment, we found that the precision on identi-
fying struggling phrases greatly affected the query suggestion

performance. In the future, we plan to improve the model for
identifying struggling phrases and improve the prediction of
the user’s information need by analyzing term-level reformu-
lation behaviors.
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